Loading [MathJax]/extensions/MathMenu.js
Stock market's price movement prediction with LSTM neural networks | IEEE Conference Publication | IEEE Xplore

Stock market's price movement prediction with LSTM neural networks


Abstract:

Predictions on stock market prices are a great challenge due to the fact that it is an immensely complex, chaotic and dynamic environment. There are many studies from var...Show More

Abstract:

Predictions on stock market prices are a great challenge due to the fact that it is an immensely complex, chaotic and dynamic environment. There are many studies from various areas aiming to take on that challenge and Machine Learning approaches have been the focus of many of them. There are many examples of Machine Learning algorithms been able to reach satisfactory results when doing that type of prediction. This article studies the usage of LSTM networks on that scenario, to predict future trends of stock prices based on the price history, alongside with technical analysis indicators. For that goal, a prediction model was built, and a series of experiments were executed and theirs results analyzed against a number of metrics to assess if this type of algorithm presents and improvements when compared to other Machine Learning methods and investment strategies. The results that were obtained are promising, getting up to an average of 55.9% of accuracy when predicting if the price of a particular stock is going to go up or not in the near future.
Date of Conference: 14-19 May 2017
Date Added to IEEE Xplore: 03 July 2017
ISBN Information:
Electronic ISSN: 2161-4407
Conference Location: Anchorage, AK, USA

Contact IEEE to Subscribe

References

References is not available for this document.