Abstract:
The application of statistics and mathematics over large amounts of data is providing healthcare systems with new tools for screening and managing multiple diseases. None...Show MoreMetadata
Abstract:
The application of statistics and mathematics over large amounts of data is providing healthcare systems with new tools for screening and managing multiple diseases. Nonetheless, these tools have many technical and clinical limitations as they are based on datasets with concrete characteristics. This proposition paper describes a novel architecture focused on providing a validation framework for discrimination and prediction models in the screening of Type 2 diabetes. For that, the architecture has been designed to gather different data sources under a common data structure and, furthermore, to be controlled by a centralized component (Orchestrator) in charge of directing the interaction flows among data sources, models and graphical user interfaces. This innovative approach aims to overcome the data-dependency of the models by providing a validation framework for the models as they are used within clinical settings.
Published in: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Date of Conference: 25-29 August 2015
Date Added to IEEE Xplore: 05 November 2015
ISBN Information:
ISSN Information:
PubMed ID: 26738188