Abstract:
Network-on-Chip (NoC) design is attracting more and more attention nowadays, but there is a lack of design optimization method due to the computationally very expensive s...Show MoreMetadata
Abstract:
Network-on-Chip (NoC) design is attracting more and more attention nowadays, but there is a lack of design optimization method due to the computationally very expensive simulations of NoC. To address this problem, an algorithm, called NoC design optimization based on Gaussian process model assisted differential evolution (NDPAD), is presented. Using the surrogate model-aware evolutionary search (SMAS) framework with the tournament selection based constraint handling method, NDPAD can obtain satisfactory solutions using a limited number of expensive simulations. The evolutionary search strategies and training data selection methods are then investigated to handle integer design parameters in NoC design optimization problems. Comparison shows that comparable or even better design solutions can be obtained compared to standard EAs, and much less computation effort is needed.
Published in: 2014 IEEE Congress on Evolutionary Computation (CEC)
Date of Conference: 06-11 July 2014
Date Added to IEEE Xplore: 22 September 2014
ISBN Information: