Loading [a11y]/accessibility-menu.js
Cross-View Image Geolocalization | IEEE Conference Publication | IEEE Xplore

Cross-View Image Geolocalization


Abstract:

The recent availability of large amounts of geotagged imagery has inspired a number of data driven solutions to the image geolocalization problem. Existing approaches pre...Show More

Abstract:

The recent availability of large amounts of geotagged imagery has inspired a number of data driven solutions to the image geolocalization problem. Existing approaches predict the location of a query image by matching it to a database of georeferenced photographs. While there are many geotagged images available on photo sharing and street view sites, most are clustered around landmarks and urban areas. The vast majority of the Earth's land area has no ground level reference photos available, which limits the applicability of all existing image geolocalization methods. On the other hand, there is no shortage of visual and geographic data that densely covers the Earth - we examine overhead imagery and land cover survey data - but the relationship between this data and ground level query photographs is complex. In this paper, we introduce a cross-view feature translation approach to greatly extend the reach of image geolocalization methods. We can often localize a query even if it has no corresponding ground level images in the database. A key idea is to learn the relationship between ground level appearance and overhead appearance and land cover attributes from sparsely available geotagged ground-level images. We perform experiments over a 1600 km2 region containing a variety of scenes and land cover types. For each query, our algorithm produces a probability density over the region of interest.
Date of Conference: 23-28 June 2013
Date Added to IEEE Xplore: 03 October 2013
Electronic ISBN:978-1-5386-5672-3

ISSN Information:

Conference Location: Portland, OR, USA

Contact IEEE to Subscribe

References

References is not available for this document.