Posterior constraints for double-counting problem in clustered pose estimation | IEEE Conference Publication | IEEE Xplore

Scheduled Maintenance: On Tuesday, May 20, IEEE Xplore will undergo scheduled maintenance from 1:00-5:00 PM ET (6:00-10:00 PM UTC). During this time, there may be intermittent impact on performance. We apologize for any inconvenience.

Posterior constraints for double-counting problem in clustered pose estimation


Abstract:

In this paper, we propose a novel and integrated framework to estimate human pose. Firstly, a pose cluster of the relative location between connected parts is applied bef...Show More

Abstract:

In this paper, we propose a novel and integrated framework to estimate human pose. Firstly, a pose cluster of the relative location between connected parts is applied before pictorial structure modeling, which can make each model more faithful and the whole estimation more flexible to various kinds of poses. And then, different from previous single global model, we propose the mixture pictorial structure models based on the clusters to obtain the parts candidates. Furthermore, to overcome the double-counting problem, we also present a constraint function to recombine the candidates derived from the optimal clustered model. Experiments on a publicly challenging dataset show that our method is more accurate and flexible and performs effectively in tackling the double-counting phenomena.
Date of Conference: 30 September 2012 - 03 October 2012
Date Added to IEEE Xplore: 21 February 2013
ISBN Information:

ISSN Information:

Conference Location: Orlando, FL, USA

Contact IEEE to Subscribe

References

References is not available for this document.