Processing math: 100%
A 320 Gb/s-Throughput Capable 2-2 Silicon-Plasmonic Router Architecture for Optical Interconnects | IEEE Journals & Magazine | IEEE Xplore

A 320 Gb/s-Throughput Capable 2 \,\times\,2 Silicon-Plasmonic Router Architecture for Optical Interconnects


Abstract:

We demonstrate a 2\,\times\, 2 silicon-plasmonic router architecture with 320 Gb/s throughput capabilities for optical interconnect applications. The proposed router pl...Show More

Abstract:

We demonstrate a 2\,\times\, 2 silicon-plasmonic router architecture with 320 Gb/s throughput capabilities for optical interconnect applications. The proposed router platform relies on a novel dual-ring Dielectric-Loaded Surface Plasmon Polariton (DLSPP) 2\,\times\,2 switch heterointegrated on a Silicon-on-Insulator (SOI) photonic motherboard that is responsible for traffic multiplexing and header processing functionalities. We present experimental results of a Poly-methyl-methacrylate (PMMA)-loaded dual-resonator DLSPP waveguide structure that uses two racetrack resonators of 5.5 \mum radius and 4 \mu m-long straight sections and operates as a passive add/drop filtering element. We derive its frequency-domain transfer function, confirm its add/drop experimental spectral response, and proceed to a circuit-level model for dual-ring DLSPP designs supporting 2\,\times\, 2 thermo-optic switch operation. The validity of our circuit-level modeled 2\,\times\, 2 thermo-optic switch is verified by means of respective full vectorial three-dimensional Finite Element Method (3D-FEM) simulations. The router setup is completed by means of two 4\,\times\, 1 SOI multiplexing circuits, each one employing four cascaded second order micro-ring configurations with 100 GHz spaced resonances. Successful interconnection between the DLSPP switching matrix and the SOI circuitry is performed through a butt-coupling design that, as shown via 3D-FEM analysis, allows for small coupling losses of as low as 2.6 dB. The final router architecture is evaluated through a co-operative simulation environment, demonstrating successful 2\,\times\, 2 routing for two incoming 4-wavelength Non-Return-to-Zero (NRZ) optical packet streams with 40 Gb/s line-rates.
Published in: Journal of Lightwave Technology ( Volume: 29, Issue: 21, November 2011)
Page(s): 3185 - 3195
Date of Publication: 08 September 2011

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.