Abstract:
As semiconductor device design rule dimensions continue to shrink, there is a demand for transistor junction depths to decrease. New processes are required that involve l...Show MoreMetadata
Abstract:
As semiconductor device design rule dimensions continue to shrink, there is a demand for transistor junction depths to decrease. New processes are required that involve lower energy implants but the reduced beam currents available due to space charge limits in beam generation and transport at these lower energies can limit productivity to such a level that other non-implant technologies become attractive. The Applied Materials xR80 implanter uses state of the art beam generation and extraction optics coupled to an open geometry, short beamline to produce enhanced performance to energies down to 2 keV. The xRLEAP significantly increases beam currents at these energies and further reduces the energies at which product worthy beam currents can be obtained by the use of high transmission energy retardation optics added to the xR80 system. The milliampere beam currents achieved down to energies of a few hundred electron volts will extend the capability of ion implantation to manufacture product worthy shallow junction devices.
Date of Conference: 16-21 June 1996
Date Added to IEEE Xplore: 06 August 2002
Print ISBN:0-7803-3289-X