Database mining: a performance perspective | IEEE Journals & Magazine | IEEE Xplore

Database mining: a performance perspective

DatasetsAvailable

Abstract:

The authors' perspective of database mining as the confluence of machine learning techniques and the performance emphasis of database technology is presented. Three class...Show More

Abstract:

The authors' perspective of database mining as the confluence of machine learning techniques and the performance emphasis of database technology is presented. Three classes of database mining problems involving classification, associations, and sequences are described. It is argued that these problems can be uniformly viewed as requiring discovery of rules embedded in massive amounts of data. A model and some basic operations for the process of rule discovery are described. It is shown how the database mining problems considered map to this model, and how they can be solved by using the basic operations proposed. An example is given of an algorithm for classification obtained by combining the basic rule discovery operations. This algorithm is efficient in discovering classification rules and has accuracy comparable to ID3, one of the best current classifiers.<>
Published in: IEEE Transactions on Knowledge and Data Engineering ( Volume: 5, Issue: 6, December 1993)
Page(s): 914 - 925
Date of Publication: 31 December 1993

ISSN Information:


This article includes datasets hosted on IEEE DataPort(TM), a data repository created by IEEE to facilitate research reproducibility or another IEEE approved repository. Click the dataset name below to access it on the data repository
Contact IEEE to Subscribe

References

References is not available for this document.