Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G | IEEE Journals & Magazine | IEEE Xplore

Abstract:

Building the next-generation wireless systems that could support services such as the metaverse, digital twins (DTs), and holographic teleportation is challenging to achi...Show More

Abstract:

Building the next-generation wireless systems that could support services such as the metaverse, digital twins (DTs), and holographic teleportation is challenging to achieve exclusively through incremental advances to conventional wireless technologies like metasurfaces or holographic antennas. While the 6G concept of artificial intelligence (AI)-native networks promises to overcome some of the limitations of existing wireless technologies, current developments of AI-native wireless systems rely mostly on conventional AI tools such as auto-encoders and off-the-shelf artificial neural networks. However, those tools struggle to manage and cope with the complex, nontrivial scenarios faced in real-world wireless environments and the growing quality-of-experience (QoE) requirements of the aforementioned, emerging wireless use cases. In contrast, in this article, we propose to fundamentally revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. Our envisioned AGI-native wireless systems acquire common sense by exploiting different cognitive abilities such as reasoning and analogy. These abilities in our proposed AGI-native wireless system are mainly founded on three fundamental components: a perception module, a world model, and an action-planning component. Collectively, these three fundamental components enable the four pillars of common sense that include dealing with unforeseen scenarios through horizontal generalizability, capturing intuitive physics, performing analogical reasoning, and filling in the blanks. Toward developing these components, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyperdimensional (HD) computing. Specifically, we propose a concrete defin...
Published in: Proceedings of the IEEE ( Early Access )
Page(s): 1 - 39
Date of Publication: 17 March 2025

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe