Abstract:
Exploring brain-heart interactions within various paradigms, including affective computing, human-computer interfaces, and sensorimotor evaluation, has demonstrated enorm...Show MoreMetadata
Abstract:
Exploring brain-heart interactions within various paradigms, including affective computing, human-computer interfaces, and sensorimotor evaluation, has demonstrated enormous potential in biomarker development and neuroscientific research. A range of techniques, from molecular to behavioral approaches, has been proposed to measure these interactions. Different frameworks use signal processing techniques, from estimating brain responses to individual heartbeats to interactions linking the heart to changes in brain organization. This review provides an overview of the most notable signal processing strategies currently used for measuring and modeling brain-heart interactions. It discusses their usability and highlights the main challenges that need to be addressed for future methodological developments. Current methodologies have deepened our understanding of the impact of physiological disruptions on brain-heart interactions, solidifying it as a biomarker. The vast outlook of these methods could provide tools for disease stratification in neurological and psychiatric disorders. As we tackle new methodological challenges, gaining a more profound understanding of how these interactions operate, we anticipate further insights into the role of peripheral neurons and the environmental input from the rest of the body in shaping brain functioning.
Published in: IEEE Reviews in Biomedical Engineering ( Early Access )