Abstract:
The operation optimization problem of coal mine integrated energy system (CMIES) is characterized by multiobjective, strong constraints, large scale, and mixed variables....Show MoreMetadata
Abstract:
The operation optimization problem of coal mine integrated energy system (CMIES) is characterized by multiobjective, strong constraints, large scale, and mixed variables. It is difficult for existing multiobjective evolutionary algorithms to obtain a set of nondominated solutions with good convergence and uniform distribution, primarily due to the absence of suitable constraint-handling techniques. This research proposes a multitask multiobjective operation optimization framework combining evolutionary algorithm and mathematical programming (MO-EAMP) to address this issue. Within this framework, the main task employs an evolutionary algorithm with global search capability to solve the multiobjective CMIES operation optimization problem. Meanwhile, auxiliary tasks utilize mathematical programming method with robust linear constraint handling capability to solve multiple weighted single-objective CMIES operation optimization problems. During the iteration process of MO-EAMP, the scale and form of auxiliary tasks are adjusted autonomously based on the current state of population, with the aim of guiding the population search toward more promising regions. Finally, the presented algorithm is applied to a coal mine in Shanxi Province, China, and the experimental results demonstrate that the proposed algorithm can obtain a set of optimal operation plans with better convergence and distribution in a shorter time, compared with 7 other existing algorithms.
Published in: IEEE Transactions on Industrial Informatics ( Volume: 20, Issue: 9, September 2024)