Abstract:
As self-driving vehicles become more prevalent, the speed and accuracy of detecting surrounding objects through onboard sensing technology have become increasingly import...Show MoreMetadata
Abstract:
As self-driving vehicles become more prevalent, the speed and accuracy of detecting surrounding objects through onboard sensing technology have become increasingly important. The YOLOv8-QSD network is a novel anchor-free driving scene detection network that builds on YOLOv8 and ensures detection accuracy while maintaining efficiency. The network’s backbone employs structural reparameterization techniques to transform the diverse branch block (DBB)-based model. To accurately detect small objects, it integrates features of different scales and implements a bidirectional feature pyramid network (BiFPN)-based feature pyramid after the backbone. To address the challenge of long-range detection in driving scenarios, a query-based model with a new pipeline structure is introduced. The test results demonstrate that this algorithm outperforms YOLOv8 on the large-scale small object detection dataset (SODA-A) in terms of both speed and accuracy. With an accuracy rate of 64.5% and reduced computational requirements of 7.1 GFLOPs, it satisfies the speed, precision, and cost-effectiveness requirements for commercial vehicles in high-speed road driving scenarios.
Published in: IEEE Transactions on Instrumentation and Measurement ( Volume: 73)