Loading [MathJax]/extensions/MathMenu.js
Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin | IEEE Journals & Magazine | IEEE Xplore

Differentially Private Federated Multi-Task Learning Framework for Enhancing Human-to-Virtual Connectivity in Human Digital Twin


Abstract:

Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin an...Show More

Abstract:

Ensuring reliable update and evolution of a virtual twin in human digital twin (HDT) systems depends on any connectivity scheme implemented between such a virtual twin and its physical counterpart. The adopted connectivity scheme must consider HDT-specific requirements including privacy, security, accuracy and the overall connectivity cost. This paper presents a new, secure, privacy-preserving and efficient human-to-virtual twin connectivity scheme for HDT by integrating three key techniques: differential privacy, federated multi-task learning and blockchain. Specifically, we adopt federated multi-task learning, a personalized learning method capable of providing higher accuracy, to capture the impact of heterogeneous environments. Next, we propose a new validation process based on the quality of trained models during the federated multi-task learning process to guarantee accurate and authorized model evolution in the virtual environment. The proposed framework accelerates the learning process without sacrificing accuracy, privacy and communication costs which, we believe, are non-negotiable requirements of HDT networks. Finally, we compare the proposed connectivity scheme with related solutions and show that the proposed scheme can enhance security, privacy and accuracy while reducing the overall connectivity cost.
Published in: IEEE Journal on Selected Areas in Communications ( Volume: 41, Issue: 11, November 2023)
Page(s): 3533 - 3547
Date of Publication: 30 August 2023

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.