Loading [MathJax]/extensions/MathMenu.js
Activity-Informed Industrial Audio Anomaly Detection Via Source Separation | IEEE Conference Publication | IEEE Xplore

Activity-Informed Industrial Audio Anomaly Detection Via Source Separation


Abstract:

We discuss a practical scenario of anomaly detection for industrial sound data where the sound of a target machine is corrupted by not only noise from plant environments ...Show More

Abstract:

We discuss a practical scenario of anomaly detection for industrial sound data where the sound of a target machine is corrupted by not only noise from plant environments but also interference from neighboring machines. This is particularly challenging since the interfering sounds are virtually indistinguishable from the target machine without additional information. To overcome these challenges, we fully exploit the information of machine activity or control that is easy to obtain in the industrial environment, and propose a framework of source separation (SS) followed by anomaly detection (AD), so called SSAD. We note that the proposed SSAD utilizes the activity information for not only AD but also SS. In our experiment based on industrial dataset, we demonstrate that the proposed method using only mixture signal and activity information achieves comparable accuracy with an oracle baseline using clean source signals.
Date of Conference: 04-10 June 2023
Date Added to IEEE Xplore: 05 May 2023
ISBN Information:

ISSN Information:

Conference Location: Rhodes Island, Greece

Contact IEEE to Subscribe

References

References is not available for this document.