Loading [a11y]/accessibility-menu.js
CAHOOT: a Context-Aware veHicular intrusiOn detectiOn sysTem | IEEE Conference Publication | IEEE Xplore

CAHOOT: a Context-Aware veHicular intrusiOn detectiOn sysTem


Abstract:

Software in modern vehicles is becoming increasingly complex and subject to vulnerabilities that an intruder can exploit to alter the functionality of vehicles. To this p...Show More

Abstract:

Software in modern vehicles is becoming increasingly complex and subject to vulnerabilities that an intruder can exploit to alter the functionality of vehicles. To this purpose, we introduce CAHOOT, a novel context-aware Intrusion Detection System (IDS) capable of detecting potential intrusions in both human and autonomous driving modes. In CAHOOT, context information consists of data collected at run-time by vehicle’s sensors and engine. Such information is used to determine drivers’ habits and information related to the environment, like traffic conditions. In this paper, we create and use a dataset by using a customised version of the MetaDrive simulator capable of collecting both human and AI driving data. Then we simulate several types of intrusions while driving: denial of service, spoofing and replay attacks. As a final step, we use the generated dataset to evaluate the CAHOOT algorithm by using several machine learning methods. The results show that CAHOOT is extremely reliable in detecting intrusions.
Date of Conference: 09-11 December 2022
Date Added to IEEE Xplore: 20 March 2023
ISBN Information:

ISSN Information:

Conference Location: Wuhan, China

Contact IEEE to Subscribe

References

References is not available for this document.