Abstract:
This research was conducted to develop a mobile application that provides expert solutions for the common problems faced by rubber planters in Sri Lanka. The application ...Show MoreMetadata
Abstract:
This research was conducted to develop a mobile application that provides expert solutions for the common problems faced by rubber planters in Sri Lanka. The application developed consists of four components, namely, identification of pests in immature rubber plantations and rubber nurseries; leaf disease identification; cover crop identification; and weed identification. Images taken using the mobile phone cameras are recognized using machine learning models developed using several convolutional neural network (CNN) architectures such as mobile net version 2 (MobileNet v2), VGG 16, VGG19, and residual networks (ResNet). After the images were recognized, the application will provide expert solutions and management strategies to the rubber planters. As most of the rubber plantations are located in areas with low network coverage, the application was designed to be operated in offline mode using TensorFlow lite technology.
Date of Conference: 09-10 December 2022
Date Added to IEEE Xplore: 31 January 2023
ISBN Information: