Ascent Similarity Caching With Approximate Indexes | IEEE Journals & Magazine | IEEE Xplore

Ascent Similarity Caching With Approximate Indexes


Abstract:

Similarity search is a key operation in multimedia retrieval systems and recommender systems, and it will play an important role also for future machine learning and augm...Show More

Abstract:

Similarity search is a key operation in multimedia retrieval systems and recommender systems, and it will play an important role also for future machine learning and augmented reality applications. When these systems need to serve large objects with tight delay constraints, edge servers close to the end-user can operate as similarity caches to speed up the retrieval. In this paper we present AÇAI, a new similarity caching policy which improves on the state of the art by using (i) an (approximate) index for the whole catalog to decide which objects to serve locally and which to retrieve from the remote server, and (ii) a mirror ascent algorithm to update the set of local objects with strong guarantees even when the request process does not exhibit any statistical regularity.
Published in: IEEE/ACM Transactions on Networking ( Volume: 31, Issue: 3, June 2023)
Page(s): 1173 - 1186
Date of Publication: 03 November 2022

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.