Few-Shot Musical Source Separation | IEEE Conference Publication | IEEE Xplore

Few-Shot Musical Source Separation


Abstract:

Deep learning-based approaches to musical source separation are often limited to the instrument classes that the models are trained on and do not generalize to separate u...Show More

Abstract:

Deep learning-based approaches to musical source separation are often limited to the instrument classes that the models are trained on and do not generalize to separate unseen instruments. To address this, we propose a few-shot musical source separation paradigm. We condition a generic U-Net source separation model using few audio examples of the target instrument. We train a few-shot conditioning encoder jointly with the U-Net to encode the audio examples into a conditioning vector to configure the U-Net via feature-wise linear modulation (FiLM). We evaluate the trained models on real musical recordings in the MUSDB18 and MedleyDB datasets. We show that our proposed few-shot conditioning paradigm outperforms the base-line one-hot instrument-class conditioned model for both seen and unseen instruments. To extend the scope of our approach to a wider variety of real-world scenarios, we also experiment with different conditioning example characteristics, including examples from different recordings, with multiple sources, or negative conditioning examples.
Date of Conference: 23-27 May 2022
Date Added to IEEE Xplore: 27 April 2022
ISBN Information:

ISSN Information:

Conference Location: Singapore, Singapore

Contact IEEE to Subscribe

References

References is not available for this document.