Abstract:
Poster generation is a significant task for a wide range of applications, which is often time-consuming and requires lots of manual editing and artistic experience. In th...Show MoreMetadata
Abstract:
Poster generation is a significant task for a wide range of applications, which is often time-consuming and requires lots of manual editing and artistic experience. In this paper, we propose a novel data-driven framework, called Text2Poster, to automatically generate visually-effective posters from textual information. Imitating the process of manual poster editing, our framework leverages a large-scale pretrained visual-textual model to retrieve background images from given texts, lays out the texts on the images iteratively by cascaded autoencoders, and finally, stylizes the texts by a matching-based method. We learn the modules of the framework by weakly-and self-supervised learning strategies, mitigating the demand for labeled data. Both objective and subjective experiments demonstrate that our Text2Poster outperforms state-of-the-art methods, including academic research and commercial software, on the quality of generated posters.
Published in: ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 23-27 May 2022
Date Added to IEEE Xplore: 27 April 2022
ISBN Information: