Abstract:
Heterogeneous information networks (HINs) are potent models of complex systems. In practice, many nodes in an HIN have their attributes unspecified, resulting in signific...Show MoreMetadata
Abstract:
Heterogeneous information networks (HINs) are potent models of complex systems. In practice, many nodes in an HIN have their attributes unspecified, resulting in significant performance degradation for supervised and unsupervised representation learning. We developed an unsupervised heterogeneous graph contrastive learning approach for analyzing HINs with missing attributes (HGCA). HGCA adopts a contrastive learning strategy to unify attribute completion and representation learning in an unsupervised heterogeneous framework. To deal with a large number of missing attributes and the absence of labels in unsupervised scenarios, we proposed an augmented network to capture the semantic relations between nodes and attributes to achieve a fine-grained attribute completion. Extensive experiments on three large real-world HINs demonstrated the superiority of HGCA over several state-of-the-art methods. The results also showed that the complemented attributes by HGCA can improve the performance of existing HIN models.
Published in: IEEE Transactions on Neural Networks and Learning Systems ( Volume: 35, Issue: 4, April 2024)