Loading [MathJax]/extensions/MathZoom.js
Augmenting Experimental Data with Simulations to Improve Activity Classification in Healthcare Monitoring | IEEE Conference Publication | IEEE Xplore

Augmenting Experimental Data with Simulations to Improve Activity Classification in Healthcare Monitoring


Abstract:

Human micro-Doppler signatures in most passive WiFi radar (PWR) scenarios are captured through real-world measurements using various hardware platforms. However, gatherin...Show More

Abstract:

Human micro-Doppler signatures in most passive WiFi radar (PWR) scenarios are captured through real-world measurements using various hardware platforms. However, gathering large volumes of high quality and diverse real radar datasets has always been an expensive and laborious task. This work presents an open-source motion capture data-driven simulation tool SimHumalator that is able to generate human micro-Doppler radar data in PWR scenarios. We qualitatively compare the micro-Doppler signatures generated through SimHumalator with the measured real signatures. Here, we present the use of SimHumalator to simulate a set of human actions. We demonstrate that augmenting a measurement database with simulated data, using SimHumalator, results in an 8% improvement in classification accuracy. Our results suggest that simulation data can be used to augment experimental datasets of limited volume to address the cold-start problem typically encountered in radar research.
Date of Conference: 07-14 May 2021
Date Added to IEEE Xplore: 18 June 2021
ISBN Information:

ISSN Information:

Conference Location: Atlanta, GA, USA

Funding Agency:


References

References is not available for this document.