Abstract:
We propose a new approach for power control in wireless networks using self-supervised learning. We partition a multi-layer perceptron that takes as input the channel mat...Show MoreMetadata
Abstract:
We propose a new approach for power control in wireless networks using self-supervised learning. We partition a multi-layer perceptron that takes as input the channel matrix and outputs the power control decisions into a backbone and a head, and we show how we can use contrastive learning to pre-train the backbone so that it produces similar embeddings at its output for similar channel matrices and vice versa, where similarity is defined in an information-theoretic sense by identifying the interference links that can be optimally treated as noise. The backbone and the head are then fine-tuned using a limited number of labeled samples. Simulation results show the effectiveness of the proposed approach, demonstrating significant gains over pure supervised learning methods in both sum-throughput and sample efficiency.1
Published in: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 06-11 June 2021
Date Added to IEEE Xplore: 13 May 2021
ISBN Information: