Cold Item Recommendations via Hierarchical Item2vec | IEEE Conference Publication | IEEE Xplore

Cold Item Recommendations via Hierarchical Item2vec


Abstract:

Learning item representations is a key building block in recommender systems research. However, representations often suffer from the cold start problem - a well-known pr...Show More

Abstract:

Learning item representations is a key building block in recommender systems research. However, representations often suffer from the cold start problem - a well-known problem in which rare items in the tail of the distribution face insufficient data yielding inadequate representations. In this work, we present a novel hybrid recommender that supports the utilization of hierarchical content-based information to mitigate the cold start problem. In particular, we assume a taxonomy of item tags in which every item is associated with several `parent' tags and the tags themselves can be associated with several `parent' tags in a hierarchical manner. Our model learns item representations that are guided by the `parent' tags of each item which allows propagating relevant information between items sharing the same hierarchy. In addition, the tags are modeled using tag representations that allow propagating information between any two tags that share a common ancestor. Due to space limitation, we focus this work on a recommendations task, however the same approach can be utilized for general representation learning e.g. language models.
Date of Conference: 17-20 November 2020
Date Added to IEEE Xplore: 09 February 2021
ISBN Information:

ISSN Information:

Conference Location: Sorrento, Italy

Contact IEEE to Subscribe

References

References is not available for this document.