Loading [MathJax]/extensions/MathZoom.js
Demonstration of Atmospheric-Pressure Radiometer With Nanocardboard Vanes | IEEE Journals & Magazine | IEEE Xplore

Demonstration of Atmospheric-Pressure Radiometer With Nanocardboard Vanes


Abstract:

Crookes radiometers have been the subject of numerous theoretical, numerical, and experimental studies because of the complicated forces they exhibit as well as their pot...Show More
Topic: Hilton Head Workshop 2020 (P) ? Physical Sensors, Actuators, or Systems

Abstract:

Crookes radiometers have been the subject of numerous theoretical, numerical, and experimental studies because of the complicated forces they exhibit as well as their potential applications to light sensing and actuation. The majority of these studies have focused on classical radiometers, which function under low vacuum pressures. In contrast, here we report a radiometer with microengineered vanes that rotates at atmospheric pressure. Its functionality at pressures thousands of times higher than previous light mills is due to unique attributes of the nanocardboard that forms its vanes: 1) the extremely low areal density (0.1 mg/cm2) of nanocardboard reduces the vane masses by two orders of magnitude; 2) its lower thermal conductivity allows a greater cross-vane temperature difference; and 3) its microchannels dramatically increase the thermal transpiration flow that drives the rotation. Intriguingly, the experimentally observed rotation speeds are substantially higher than those theoretically expected. Our device demonstrates new possibilities for micromanipulation, propulsion of aerial vehicles, and light-powered generators. [2020-0165].
Topic: Hilton Head Workshop 2020 (P) ? Physical Sensors, Actuators, or Systems
Published in: Journal of Microelectromechanical Systems ( Volume: 29, Issue: 5, October 2020)
Page(s): 811 - 817
Date of Publication: 31 July 2020

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.