Loading [MathJax]/extensions/MathMenu.js
Transfer Learning Based Plant Diseases Detection Using ResNet50 | IEEE Conference Publication | IEEE Xplore

Transfer Learning Based Plant Diseases Detection Using ResNet50


Abstract:

Plant diseases are a principal threat to the safety of food. In agriculture sectors, it is the greatest challenge to identify plant diseases. The state-of-the-art Convolu...Show More

Abstract:

Plant diseases are a principal threat to the safety of food. In agriculture sectors, it is the greatest challenge to identify plant diseases. The state-of-the-art Convolutional Neural Network (CNN) gives excellent results to solve image classification tasks in computer vision. Transfer Learning enables us to develop a deep CNN network in a most cost effective way. In this work, a Transfer Learning based CNN model was developed for the identification of plant diseases precisely. The dataset, we have used is consists of 70295 training images and 17572 validation images holding 38 different classes of plant leaves images. We have focused mainly on ResNet50 network, a popular CNN architecture as our pre-trained model in Transfer Learning. Additionally, several Transfer Learning architectures were experimented with few other popular pre-trained models (VGG16, VGG19, AlexNet) and compared with the proposed model. The proposed model has given the best performance of 99.80 % training accuracy.
Date of Conference: 20-22 December 2019
Date Added to IEEE Xplore: 16 April 2020
ISBN Information:
Conference Location: Khulna, Bangladesh

Contact IEEE to Subscribe

References

References is not available for this document.