Magnetic Odometry - A Model-Based Approach Using a Sensor Array | IEEE Conference Publication | IEEE Xplore

Magnetic Odometry - A Model-Based Approach Using a Sensor Array


Abstract:

A model-based method to perform odometry using an array of magnetometers that sense variations in a local magnetic field is presented. The method requires no prior knowle...Show More

Abstract:

A model-based method to perform odometry using an array of magnetometers that sense variations in a local magnetic field is presented. The method requires no prior knowledge of the magnetic field, nor does it compile any map of it. Assuming that the local variations in the magnetic field can be described by a curl and divergence free polynomial model, a maximum likelihood estimator is derived. To gain insight into the array design criteria and the achievable estimation performance, the identifiability conditions of the estimation problem are analyzed and the Cramér-Rao bound for the one-dimensional case is derived. The analysis shows that with a second-order model it is sufficient to have six magnetometer triads in a plane to obtain local identifiability. Further, the Cramér-Rao bound shows that the estimation error is inversely proportional to the ratio between the rate of change of the magnetic field and the noise variance, as well as the length scale of the array. The performance of the proposed estimator is evaluated using real-world data. The results show that, when there are sufficient variations in the magnetic field, the estimation error is of the order of a few percent of the displacement. The method also outperforms current state-of-the-art method for magnetic odometry.
Date of Conference: 10-13 July 2018
Date Added to IEEE Xplore: 06 September 2018
ISBN Information:
Conference Location: Cambridge, UK

Contact IEEE to Subscribe

References

References is not available for this document.