Abstract:
In this letter, we demonstrate that the dispersion properties of printed double-sided parallel-strip lines can be controlled by using glide symmetry. Glide symmetry is in...Show MoreMetadata
Abstract:
In this letter, we demonstrate that the dispersion properties of printed double-sided parallel-strip lines can be controlled by using glide symmetry. Glide symmetry is introduced in with corrugations in both strips of a double-sided line. We demonstrate that glide symmetry eliminates the stopband between first and second propagating modes and yields to a higher propagation constant, preserving its linearity, and the broadband nature of the underlying guiding technology. Thus, the glide-symmetric double-sided line can be designed to possess a high equivalent refractive index in an ultrawide range of frequencies. These exceptional properties have been numerically and experimentally validated. Finally, we demonstrate the possibilities of this technology with a specific design, a glide-symmetric double-sided parallel-strip line with filtering properties. Potential applications are low-dispersive leaky-wave antennas and electromechanical tunable phase shifters and filters.
Published in: IEEE Microwave and Wireless Components Letters ( Volume: 28, Issue: 9, September 2018)