Loading [a11y]/accessibility-menu.js
ApDeepSense: Deep Learning Uncertainty Estimation without the Pain for IoT Applications | IEEE Conference Publication | IEEE Xplore

ApDeepSense: Deep Learning Uncertainty Estimation without the Pain for IoT Applications


Abstract:

Recent advances in deep-learning-based applications have attracted a growing attention from the IoT community. These highly capable learning models have shown significant...Show More

Abstract:

Recent advances in deep-learning-based applications have attracted a growing attention from the IoT community. These highly capable learning models have shown significant improvements in expected accuracy of various sensory inference tasks. One important and yet overlooked direction remains to provide uncertainty estimates in deep learning outputs. Since robustness and reliability of sensory inference results are critical to IoT systems, uncertainty estimates are indispensable for IoT applications. To address this challenge, we develop ApDeepSense, an effective and efficient deep learning uncertainty estimation method for resource-constrained IoT devices. ApDeepSense leverages an implicit Bayesian approximation that links neural networks to deep Gaussian processes, allowing output uncertainty to be quantified. Our approach is shown to significantly reduce the execution time and energy consumption of uncertainty estimation thanks to a novel layer-wise approximation that replaces the traditional computationally intensive sampling-based uncertainty estimation methods. ApDeepSense is designed for neural net-works trained using dropout; one of the most widely used regularization methods in deep learning. No additional training is needed for uncertainty estimation purposes. We evaluate ApDeepSense using four IoT applications on Intel Edison devices. Results show that ApDeepSense can reduce around 88.9% of the execution time and 90.0% of the energy consumption, while producing more accurate uncertainty estimates compared with state-of-the-art methods.
Date of Conference: 02-06 July 2018
Date Added to IEEE Xplore: 23 July 2018
ISBN Information:
Electronic ISSN: 2575-8411
Conference Location: Vienna, Austria

Contact IEEE to Subscribe

References

References is not available for this document.