Abstract:
This paper studies siting and sizing of plug-in electric vehicle (PEV) fast-charging stations on coupled transportation and power networks. We develop a closed-form model...Show MoreMetadata
Abstract:
This paper studies siting and sizing of plug-in electric vehicle (PEV) fast-charging stations on coupled transportation and power networks. We develop a closed-form model for PEV fast-charging stations' service abilities, which considers heterogeneous PEV driving ranges and charging demands. We utilize a modified capacitated flow refueling location model based on subpaths (CFRLM_SP) to explicitly capture time-varying PEV charging demands on the transportation network under driving range constraints. We explore extra constraints of the CFRLM_SP to enhance model accuracy and computational efficiency. We then propose a stochastic mixed-integer second-order cone programming model for PEV fast-charging station planning. The model considers the transportation network constraints of CFRLM_SP and the power network constraints with ac power flow. Numerical experiments are conducted to illustrate the effectiveness of the proposed method.
Published in: IEEE Transactions on Power Systems ( Volume: 33, Issue: 3, May 2018)