Abstract:
Millimeter wave (mmWave) systems operating over a wide bandwidth and using a large number of antennas impose a heavy burden on power consumption. In a massive multiple-in...Show MoreMetadata
Abstract:
Millimeter wave (mmWave) systems operating over a wide bandwidth and using a large number of antennas impose a heavy burden on power consumption. In a massive multiple-input multiple-output (MIMO) uplink, analog-to-digital converters (ADCs) would be the primary consumer of power in the base station receiver. This paper proposes a bit allocation (BA) method for mmWave multi-user (MU) massive MIMO systems under a power constraint. We apply ADCs to the outputs of an analog phased array for beamspace projection to exploit mmWave channel sparsity. We relax a mean square quantization error (MSQE) minimization problem and map the closed-form solution to non-negative integer bits at each ADC. In link-level simulations, the proposed method gives better communication performance than conventional low-resolution ADCs for the same or less power. Our contribution is a near optimal low-complexity BA method that minimizes total MSQE under a power constraint.
Published in: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 05-09 March 2017
Date Added to IEEE Xplore: 19 June 2017
ISBN Information:
Electronic ISSN: 2379-190X