Abstract:
This paper considers network control for wireless networks with finite buffers. We investigate the performance of joint flow control, routing, and scheduling algorithms w...Show MoreMetadata
Abstract:
This paper considers network control for wireless networks with finite buffers. We investigate the performance of joint flow control, routing, and scheduling algorithms which achieve high network utility and deterministically bounded backlogs inside the network. Our algorithms guarantee that buffers inside the network never overflow. We study the tradeoff between buffer size and network utility and show that if internal buffers have size (N - 1)/¿ then a high fraction of the maximum utility can be achieved, where ¿ captures the loss in utility and N is the number of network nodes. The underlying scheduling/routing component of the considered control algorithms requires ingress queue length information (IQI) at all network nodes. However, we show that these algorithms can achieve the same utility performance with delayed ingress queue length information. Numerical results reveal that the considered algorithms achieve nearly optimal network utility with a significant reduction in queue backlog compared to the existing algorithm in the literature. Finally, we discuss extension of the algorithms to wireless networks with time-varying links.
Published in: 2010 Proceedings IEEE INFOCOM
Date of Conference: 14-19 March 2010
Date Added to IEEE Xplore: 06 May 2010
ISBN Information: