Abstract:
In this paper, we propose a Petri Net (PN) decomposition approach to the optimization of route planning problems for automated guided vehicles (AGVs) in semiconductor fab...Show MoreMetadata
Abstract:
In this paper, we propose a Petri Net (PN) decomposition approach to the optimization of route planning problems for automated guided vehicles (AGVs) in semiconductor fabrication bays. An augmented PN is developed to model the concurrent dynamics for multiple AGVs. The route planning problem to minimize the total transportation time is formulated as an optimal transition firing sequence problem for the PN. The PN is decomposed into several subnets such that the subnets are made independent by removing the original shared places and creating its own set of resource places for each subnet with the appropriate connections. The partial solution derived at each subnet is not usually making a feasible solution for the entire PN. The penalty function algorithm is used to integrate the solutions derived at the decomposed subnets. The optimal solution for each subnet is repeatedly generated by using the shortest-path algorithm in polynomial time with a penalty function embedded in the objective function. The effectiveness of the proposed method is demonstrated for a practical-sized route planning problem in semiconductor fabrication bay from computational experiments.
Published in: IEEE Transactions on Automation Science and Engineering ( Volume: 7, Issue: 3, July 2010)