Abstract:
The rapid expansion of multimedia contents has led to the emergence of multimodal recommendation systems. It has attracted increasing attention in recommendation systems ...Show MoreMetadata
Abstract:
The rapid expansion of multimedia contents has led to the emergence of multimodal recommendation systems. It has attracted increasing attention in recommendation systems because its full utilization of data from different modalities alleviates the persistent data sparsity problem. As such, multimodal recommendation models can learn personalized information about nodes in terms of visual and textual. To further alleviate the data sparsity problem, some previous works have introduced graph convolutional networks (GCNs) for multimodal recommendation systems, to enhance the semantic representation of users and items by capturing the potential relationships between them. However, adopting GCNs inevitably introduces the over-smoothing problem, which make nodes to be too similar. Unfortunately, incorporating multimodal information will exacerbate this challenge because nodes that are too similar will lose the personalized information learned through multimodal information. To address this problem, we propose a novel model that retains the personalized information of ego nodes during feature aggregation by Reducing Node-neighbor Discrepancy (RedNnD). Extensive experiments on three public datasets show that RedNnD achieves state-of-the-art performance on accuracy and robustness, with significant improvements over existing GCN-based multimodal frameworks.
Published in: ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Date of Conference: 06-11 April 2025
Date Added to IEEE Xplore: 07 March 2025
ISBN Information: