Hierarchical Experience-informed Navigation for Multi-modal Quadrupedal Rebar Grid Traversal | IEEE Conference Publication | IEEE Xplore

Hierarchical Experience-informed Navigation for Multi-modal Quadrupedal Rebar Grid Traversal


Abstract:

This study focuses on a layered, experience-based, multi-modal contact planning framework for agile quadrupedal locomotion over a constrained rebar environment. To this e...Show More

Abstract:

This study focuses on a layered, experience-based, multi-modal contact planning framework for agile quadrupedal locomotion over a constrained rebar environment. To this end, our hierarchical planner incorporates locomotion-specific modules into the high-level contact sequence planner and performs kinodynamically-aware trajectory optimization as the low-level motion planner. Through quantitative analysis of the experience accumulation process and experimental validation of the kinodynamic feasibility of the generated locomotion trajectories, we demonstrate that the planning heuristic of experience offers an effective way of providing candidate footholds for a legged contact planner. Additionally, we introduce a guiding torso path heuristic at the global planning level to enhance the navigation success rate in the presence of environmental obstacles. Our results indicate that the torso-path guided experience accumulation requires significantly fewer offline trials to successfully reach the goal compared to regular experience accumulation. Finally, our planning framework is validated in both dynamics simulations and real hardware implementations on a quadrupedal robot provided by Skymul Inc.
Date of Conference: 13-17 May 2024
Date Added to IEEE Xplore: 08 August 2024
ISBN Information:
Conference Location: Yokohama, Japan

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.