Abstract:
Applying deep learning models for healthcare-related forecasting applications has been widely adopted, such as leveraging glucose monitoring data of diabetes patients to ...Show MoreMetadata
Abstract:
Applying deep learning models for healthcare-related forecasting applications has been widely adopted, such as leveraging glucose monitoring data of diabetes patients to predict hyperglycaemic or hypoglycaemic events. However, most deep learning models are considered black-boxes; hence, the model predictions are not interpretable and may not offer actionable insights into medical practitioners’ decisions. Previous work has shown that counterfactual explanations can be applied in forecasting tasks by suggesting counterfactual changes in time series inputs to achieve the desired forecasting outcome. This study proposes a generalized multivariate forecasting setup of counterfactual generation by introducing a novel approach, COMET, which imposes three domain-specific constraint mechanisms to provide counterfactual explanations for glucose forecasting. Moreover, we conduct the experimental evaluation using two diabetes patient datasets to demonstrate the effectiveness of our proposed approach in generating realistic counterfactual changes in comparison with a baseline approach. Our qualitative analysis evaluates examples to validate that the counterfactual samples are clinically relevant and can effectively lead the patients to achieve a normal range of predicted glucose levels by suggesting changes to the treatment variables.
Date of Conference: 26-28 June 2024
Date Added to IEEE Xplore: 25 July 2024
ISBN Information: