Abstract:
Signal identification, a vital task of intelligent communication radios, finds its applications in various military and civil communication systems. Previous works on ide...Show MoreMetadata
Abstract:
Signal identification, a vital task of intelligent communication radios, finds its applications in various military and civil communication systems. Previous works on identification for space-time block codes (STBC) of multiple-input multiple-output (MIMO) system employing orthogonal frequency division multiplexing (OFDM) are limited to additive white Gaussian noise. In this paper, we develop a novel automatic identification algorithm to exploit the generalized cross-correntropy function of the received signals to classify STBC-OFDM signals in the presence of Gaussian noise and impulsive interference. This algorithm first introduces the generalized cross-correntropy function to fully utilize the space-time redundancy of STBC-OFDM signals. The strongly-distinguishable discriminating matrix is then constructed by using the generalized cross-correntropy for multiple receive antennas. Finally, a decision tree identification algorithm is employed to identify the STBC-OFDM signals which is extended by the binary hypothesis test. The proposed algorithm avoids the traditionally required pre-processing tasks, such as channel coefficient estimation, noise and interference statistics prediction and modulation type recognition. Numerical results are presented to show that the proposed scheme provides good identification performance by exploiting the generalized cross-correntropy function of STBC-OFDM signals under impulsive interference circumstances.
Published in: IEEE Transactions on Communications ( Volume: 72, Issue: 8, August 2024)