Data clustering using evidence accumulation | IEEE Conference Publication | IEEE Xplore

Data clustering using evidence accumulation


Abstract:

We explore the idea of evidence accumulation for combining the results of multiple clusterings. Initially, n d-dimensional data is decomposed into a large number of compa...Show More

Abstract:

We explore the idea of evidence accumulation for combining the results of multiple clusterings. Initially, n d-dimensional data is decomposed into a large number of compact clusters; the K-means algorithm performs this decomposition, with several clusterings obtained by N random initializations of the K-means. Taking the co-occurrences of pairs of patterns in the same cluster as votes for their association, the data partitions are mapped into a co-association matrix of patterns. This n/spl times/n matrix represents a new similarity measure between patterns. The final clusters are obtained by applying a MST-based clustering algorithm on this matrix. Results on both synthetic and real data show the ability of the method to identify arbitrary shaped clusters in multidimensional data.
Date of Conference: 11-15 August 2002
Date Added to IEEE Xplore: 10 December 2002
Print ISBN:0-7695-1695-X
Print ISSN: 1051-4651
Conference Location: Quebec City, QC, Canada

Contact IEEE to Subscribe

References

References is not available for this document.