Loading [MathJax]/extensions/MathMenu.js
Real-Time Compressed Sensing for Joint Hyperspectral Image Transmission and Restoration for CubeSat | IEEE Journals & Magazine | IEEE Xplore

Real-Time Compressed Sensing for Joint Hyperspectral Image Transmission and Restoration for CubeSat


Abstract:

This article addresses the challenges associated with hyperspectral image (HSI) reconstruction from miniaturized satellites, which often suffer from stripe effects and ar...Show More

Abstract:

This article addresses the challenges associated with hyperspectral image (HSI) reconstruction from miniaturized satellites, which often suffer from stripe effects and are computationally resource-limited. We propose a real-time compressed sensing (RTCS) network designed to be lightweight and require only relatively few training samples for efficient and robust HSI reconstruction in the presence of the stripe effect and under noisy transmission conditions. The RTCS network features a simplified architecture that reduces the required training samples and allows for easy implementation on integer-8-based encoders, facilitating rapid compressed sensing for stripe-like HSI, which exactly matches the moderate design of miniaturized satellites on push broom scanning mechanism. This contrasts optimization-based models that demand high-precision floating-point operations, making them difficult to deploy on edge devices. Our encoder employs an integer-8-compatible linear projection for stripe-like HSI data transmission, ensuring RTCS. Furthermore, based on the novel two-streamed architecture, an efficient HSI restoration decoder is proposed for the receiver side, allowing for edge-device reconstruction without needing a sophisticated central server. This is particularly crucial as an increasing number of miniaturized satellites necessitates significant computing resources on the ground station. Extensive experiments validate the superior performance of our approach, offering new and vital capabilities for existing miniaturized satellite systems.
Article Sequence Number: 5512416
Date of Publication: 18 March 2024

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.