Loading [MathJax]/extensions/MathZoom.js
Data-Driven Modeling and Experimental Validation of Autonomous Vehicles Using Koopman Operator | IEEE Conference Publication | IEEE Xplore

Data-Driven Modeling and Experimental Validation of Autonomous Vehicles Using Koopman Operator


Abstract:

This paper presents a data-driven framework to discover underlying dynamics on a scaled F1TENTH vehicle using the Koopman operator linear predictor. Traditionally, a rang...Show More

Abstract:

This paper presents a data-driven framework to discover underlying dynamics on a scaled F1TENTH vehicle using the Koopman operator linear predictor. Traditionally, a range of white, gray, or black-box models are used to develop controllers for vehicle path tracking. However, these models are constrained to either linearized operational domains, unable to handle significant variability or lose explainability through end-2-end operational settings. The Koopman Extended Dynamic Mode Decomposition (EDMD) linear predictor seeks to utilize data-driven model learning whilst providing benefits like explainability, model analysis and the ability to utilize linear model-based control techniques. Consider a trajectory-tracking problem for our scaled vehicle platform. We collect pose measurements of our F1TENTH car undergoing standard vehicle dynamics benchmark maneuvers with an OptiTrack indoor localization system. Utilizing these uniformly spaced temporal snapshots of the states and control inputs, a data-driven Koopman EDMD model is identified. This model serves as a linear predictor for state propagation, upon which an MPC feedback law is designed to enable trajectory tracking. The prediction and control capabilities of our framework are highlighted through real-time deployment on our scaled vehicle.
Date of Conference: 01-05 October 2023
Date Added to IEEE Xplore: 13 December 2023
ISBN Information:

ISSN Information:

Conference Location: Detroit, MI, USA

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.