Abstract:
Event cameras are asynchronous neuromorphic vision sensors with high temporal resolution and no motion blur, offering advantages over standard frame-based cameras especia...Show MoreMetadata
Abstract:
Event cameras are asynchronous neuromorphic vision sensors with high temporal resolution and no motion blur, offering advantages over standard frame-based cameras especially in high-speed motions and high dynamic range conditions. However, event cameras are unable to capture the overall context of the scene, and produce different events for the same scenery depending on the direction of the motion, creating a challenge in data association. Standard camera, on the other hand, provides frames at a fixed rate that are independent of the motion direction, and are rich in context. In this paper, we present a robust feature tracking method that employs 8-DOF warping model in minimizing the difference between brightness increment patches from events and frames, exploiting the complementary nature of the two data types. Unlike previous works, the proposed method enables tracking of features under complex motions accompanying distortions. Extensive quantitative evaluation over publicly available datasets was performed where our method shows an improvement over state-of-the-art methods in robustness with greatly prolonged feature age and in accuracy for challenging scenarios.
Date of Conference: 29 May 2023 - 02 June 2023
Date Added to IEEE Xplore: 04 July 2023
ISBN Information: