Abstract:
This paper presents a resilience-oriented cellular grid formation approach to achieve scalable and reconfigurable community microgrid operations for distribution systems ...Show MoreMetadata
Abstract:
This paper presents a resilience-oriented cellular grid formation approach to achieve scalable and reconfigurable community microgrid operations for distribution systems with behind-the-meter distributed energy resources. A set of interconnected solar photovoltaics, energy storage systems, and load is termed as a cell, implying a subset of the grid that can operate independently using its own resources. Cells are identified such that each cell inherently has sufficient energy resources to black start and can provide a certain level of backup power for its load under the loss of utility power supply. The proposed cell formation approach builds on a unique self-organizing map-based method (SomRes) to quantify a system’s resilience. Using SomRes and a non-dominated sorting-based genetic algorithm (NSGA-II), a fast and efficient cell formation algorithm is developed to identify cells in a distribution system that are resilient against extreme events. The efficacy of the proposed approach is demonstrated on a numerical model of a real distribution feeder in Colorado, United States.
Date of Conference: 10-13 April 2023
Date Added to IEEE Xplore: 18 April 2023
ISBN Information: