Improving accuracy of feature-based RGB-D SLAM by modeling spatial uncertainty of point features | IEEE Conference Publication | IEEE Xplore

Improving accuracy of feature-based RGB-D SLAM by modeling spatial uncertainty of point features


Abstract:

Many recent solutions to the RGB-D SLAM problem use the pose-graph optimization approach, which marginalizes out the actual depth measurements. In this paper we employ th...Show More

Abstract:

Many recent solutions to the RGB-D SLAM problem use the pose-graph optimization approach, which marginalizes out the actual depth measurements. In this paper we employ the same type of factor graph optimization, but we investigate the gains coming from maintaining a map of RGBD point features and modeling the spatial uncertainty of these features. We demonstrate that RGB-D SLAM accuracy can be increased by employing uncertainty models reflecting the actual errors introduced by measurements and image processing. The new approach is validated in simulations and in experiments involving publicly available data sets to ensure that our results are verifiable.
Date of Conference: 16-21 May 2016
Date Added to IEEE Xplore: 09 June 2016
Electronic ISBN:978-1-4673-8026-3
Conference Location: Stockholm, Sweden

Contact IEEE to Subscribe

References

References is not available for this document.