Design of a neural decoder by sensory prediction and error correction | IEEE Conference Publication | IEEE Xplore

Design of a neural decoder by sensory prediction and error correction


Abstract:

Brain-machine interfaces (BMI) hold great potential to improve the quality of life of many patients with disabilities. The neural decoder, which expresses the mapping bet...Show More

Abstract:

Brain-machine interfaces (BMI) hold great potential to improve the quality of life of many patients with disabilities. The neural decoder, which expresses the mapping between the neural signals and the subject's motion, plays an important role in BMI systems. Conventional neural decoders are generally in the form of a kinematic Kalman filter which does not possess an explicit mechanism to deal with the unavoidable mismatch between the biological system and the model of the system used by the decoder. This paper presents a novel design of a neural decoder that uses a one-step model predictive controller to generate a control signal that compensates for the inherent model mismatch. The effectiveness of the proposed decoding algorithm compares favorably to the state-of-the-art Kalman filter in numerical simulations with different degrees of model mismatch.
Date of Conference: 15-17 December 2014
Date Added to IEEE Xplore: 12 February 2015
ISBN Information:
Print ISSN: 0191-2216
Conference Location: Los Angeles, CA, USA

Contact IEEE to Subscribe

References

References is not available for this document.