Semi-supervised Learning for RGB-D Object Recognition | IEEE Conference Publication | IEEE Xplore

Semi-supervised Learning for RGB-D Object Recognition


Abstract:

Conventional supervised object recognition methods have been investigated for many years. Despite their successes, there are still two suffering limitations: (1) various ...Show More

Abstract:

Conventional supervised object recognition methods have been investigated for many years. Despite their successes, there are still two suffering limitations: (1) various information of an object is represented by artificial features only derived from RGB images, (2) lots of manually labeled data is required by supervised learning. To address those limitations, we propose a new semi-supervised learning framework based on RGB and depth (RGB-D) images to improve object recognition. In particular, our framework has two modules: (1) RGB and depth images are represented by convolutional-recursive neural networks to construct high level features, respectively, (2) co-training is exploited to make full use of unlabeled RGB-D instances due to the existing two independent views. Experiments on the standard RGB-D object dataset demonstrate that our method can compete against with other state-of-the-art methods with only 20% labeled data.
Date of Conference: 24-28 August 2014
Date Added to IEEE Xplore: 06 December 2014
Electronic ISBN:978-1-4799-5209-0
Print ISSN: 1051-4651
Conference Location: Stockholm, Sweden

Contact IEEE to Subscribe

References

References is not available for this document.