Robust object tracking via sparsity-based collaborative model | IEEE Conference Publication | IEEE Xplore

Robust object tracking via sparsity-based collaborative model


Abstract:

In this paper we propose a robust object tracking algorithm using a collaborative model. As the main challenge for object tracking is to account for drastic appearance ch...Show More

Abstract:

In this paper we propose a robust object tracking algorithm using a collaborative model. As the main challenge for object tracking is to account for drastic appearance change, we propose a robust appearance model that exploits both holistic templates and local representations. We develop a sparsity-based discriminative classifier (SD-C) and a sparsity-based generative model (SGM). In the S-DC module, we introduce an effective method to compute the confidence value that assigns more weights to the foreground than the background. In the SGM module, we propose a novel histogram-based method that takes the spatial information of each patch into consideration with an occlusion handing scheme. Furthermore, the update scheme considers both the latest observations and the original template, thereby enabling the tracker to deal with appearance change effectively and alleviate the drift problem. Numerous experiments on various challenging videos demonstrate that the proposed tracker performs favorably against several state-of-the-art algorithms.
Date of Conference: 16-21 June 2012
Date Added to IEEE Xplore: 26 July 2012
ISBN Information:

ISSN Information:

Conference Location: Providence, RI, USA

Contact IEEE to Subscribe

References

References is not available for this document.