Noise Covariance Properties in Dual-Tree Wavelet Decompositions | IEEE Journals & Magazine | IEEE Xplore

Noise Covariance Properties in Dual-Tree Wavelet Decompositions


Abstract:

Dual-tree wavelet decompositions have recently gained much popularity, mainly due to their ability to provide an accurate directional analysis of images combined with a r...Show More

Abstract:

Dual-tree wavelet decompositions have recently gained much popularity, mainly due to their ability to provide an accurate directional analysis of images combined with a reduced redundancy. When the decomposition of a random process is performed-which occurs in particular when an additive noise is corrupting the signal to be analyzed-it is useful to characterize the statistical properties of the dual-tree wavelet coefficients of this process. As dual-tree decompositions constitute over-complete frame expansions, correlation structures are introduced among the coefficients, even when a white noise is analyzed. In this paper, we show that it is possible to provide an accurate description of the covariance properties of the dual-tree coefficients of a wide-sense-stationary process. The expressions of the (cross-) covariance sequences of the coefficients are derived in the one- and two-dimensional cases. Asymptotic results are also provided, allowing to predict the behavior of the second-order moments for large lag values or at coarse resolution. In addition, the cross-correlations between the primal and dual wavelets, which play a primary role in our theoretical analysis, are calculated for a number of classical wavelet families. Simulation results are finally provided to validate these results.
Published in: IEEE Transactions on Information Theory ( Volume: 53, Issue: 12, December 2007)
Page(s): 4680 - 4700
Date of Publication: 17 December 2007

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.