Loading [MathJax]/extensions/MathMenu.js
Ensemble Tracking | IEEE Journals & Magazine | IEEE Xplore

Ensemble Tracking


Abstract:

We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained online to distinguish between the object and the background. The...Show More

Abstract:

We consider tracking as a binary classification problem, where an ensemble of weak classifiers is trained online to distinguish between the object and the background. The ensemble of weak classifiers is combined into a strong classifier using AdaBoost. The strong classifier is then used to label pixels in the next frame as either belonging to the object or the background, giving a confidence map. The peak of the map and, hence, the new position of the object, is found using mean shift. Temporal coherence is maintained by updating the ensemble with new weak classifiers that are trained online during tracking. We show a realization of this method and demonstrate it on several video sequences
Page(s): 261 - 271
Date of Publication: 02 January 2007

ISSN Information:

PubMed ID: 17170479

Contact IEEE to Subscribe

References

References is not available for this document.