Abstract:
Intrinsic variations and challenging leakage control in today's bulk-Si MOSFETs limit the scaling of SRAM. Design tradeoffs in six-transistor (6-T) and four-transistor (4...Show MoreMetadata
Abstract:
Intrinsic variations and challenging leakage control in today's bulk-Si MOSFETs limit the scaling of SRAM. Design tradeoffs in six-transistor (6-T) and four-transistor (4-T) SRAM cells are presented in this work. It is found that 6-T and 4-T FinFET-based SRAM cells designed with built-in feedback achieve significant improvements in the cell static noise margin (SNM) without area penalty. Up to 2/spl times/ improvement in SNM can be achieved in 6-T FinFET-based SRAM cells. A 4-T FinFET-based SRAM cell with built-in feedback can achieve sub-100pA per-cell standby current and offer the similar improvements in SNM as the 6-T cell with feedback, making them attractive for low-power, low-voltage applications.
Published in: ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.
Date of Conference: 08-10 August 2005
Date Added to IEEE Xplore: 24 October 2005
Print ISBN:1-59593-137-6