By Topic

Intelligent Transportation Systems, IEEE Transactions on

Issue 3 • Date Sep 2000

Filter Results

Displaying Results 1 - 5 of 5
  • Walking pedestrian recognition

    Page(s): 155 - 163
    Save to Project icon | Request Permissions | Click to expandQuick Abstract | PDF file iconPDF (752 KB)  

    In previous years, many methods providing the ability to recognize rigid obstacles-sedans and trucks-have been developed. These methods provide the driver with relevant information. They are able to cope reliably with scenarios on motorways. Nevertheless, not much attention has been given to image processing approaches to increase the safety of pedestrians in urban environments. In the paper, a method for the detection, tracking, and final recognition of pedestrians crossing the moving observer's trajectory is suggested. A combination of data- and model-driven approaches is realized. The initial detection process is based on a fusion of texture analysis, model-based grouping of, most likely, the geometric features of pedestrians, and inverse-perspective mapping (binocular vision). Additionally, motion patterns of limb movements are analyzed to determine initial object-hypotheses. The tracking of the quasirigid part of the body is performed by different algorithms that have been successfully employed for the tracking of sedans, trucks, motorbikes, and pedestrians. The final classification is obtained by a temporal analysis of the walking process View full abstract»

    Full text access may be available. Click article title to sign in or learn about subscription options.
  • Stereo- and neural network-based pedestrian detection

    Page(s): 148 - 154
    Save to Project icon | Request Permissions | Click to expandQuick Abstract | PDF file iconPDF (168 KB)  

    Pedestrian detection is essential to avoid dangerous traffic situations. We present a fast and robust algorithm for detecting pedestrians in a cluttered scene from a pair of moving cameras. This is achieved through stereo-based segmentation and neural network-based recognition. The algorithm includes three steps. First, we segment the image into sub-image object candidates using disparities discontinuity. Second, we merge and split the sub-image object candidates into sub-images that satisfy pedestrian size and shape constraints. Third, we use intensity gradients of the candidate sub-images as input to a trained neural network for pedestrian recognition. The experiments on a large number of urban street scenes demonstrate that the proposed algorithm: (1) can detect pedestrians in various poses, shapes, sizes, clothing, and occlusion status; (2) runs in real-time; and (3) is robust to illumination and background changes View full abstract»

    Full text access may be available. Click article title to sign in or learn about subscription options.
  • Full text access may be available. Click article title to sign in or learn about subscription options.
  • Simultaneous detection of lane and pavement boundaries using model-based multisensor fusion

    Page(s): 135 - 147
    Save to Project icon | Request Permissions | Click to expandQuick Abstract | PDF file iconPDF (352 KB)  

    Treats a problem arising in the design of intelligent vehicles: automated detection of lane and pavement boundaries using forward-looking optical and radar imaging sensors mounted on an automobile. In previous work, lane and pavement boundaries have always been located separately. This separate detection strategy is problematic in situations when either the optical or the radar image is too noisy. We propose a Bayesian multisensor image fusion method to solve our boundary detection problem. This method makes use of a deformable template model to globally describe the boundaries of interest. The optical and radar imaging processes are described with random field likelihoods. The multisensor fusion boundary detection problem is reformulated as a joint MAP estimation problem. However, the joint MAP estimate is intractable, as it involves the computation of a notoriously difficult normalization constant, also known as the partition function. Therefore, we settle for the so-called empirical MAP estimate, as an approximation to the true MAP estimate. Several experimental results are provided to demonstrate the efficacy of the empirical MAP estimation method in simultaneously detecting lane and pavement boundaries. Fusion of multi-modal images is not only of interest to the intelligent vehicles community, but to others as well, such as biomedicine, remote sensing, target recognition. The method presented in the paper is also applicable to image fusion problems in these other areas View full abstract»

    Full text access may be available. Click article title to sign in or learn about subscription options.
  • Visual perception of obstacles and vehicles for platooning

    Page(s): 164 - 176
    Save to Project icon | Request Permissions | Click to expandQuick Abstract | PDF file iconPDF (820 KB)  

    Presents the methods for sensing obstacles and vehicles implemented on the University of Parma experimental vehicle (ARGO). The ARGO project is briefly described along with its main objectives; the prototype vehicle and its functionalities are presented. The perception of the environment is performed through the processing of images acquired from the vehicle. Details about the stereo vision-based detection of generic obstacles are given, along with a measurement of the performance of the method; then a new approach for leading vehicles detection is described, relying on symmetry detection in monocular images. The paper concludes with a description of the current implementation of the control system, based on a gain scheduled controller, which allows the vehicle to follow the road or other vehicles View full abstract»

    Full text access may be available. Click article title to sign in or learn about subscription options.

Aims & Scope

The IEEE Transactions on ITS is concerned with the design, analysis, and control of information technology as it is applied to transportation systems. The IEEE ITS Transactions is focused on the numerous technical aspects of ITS technologies spanned by the IEEE. Transportation systems are invariably complex, and their complexity arises from many sources. Transportation systems can involve humans, vehicles, shipments, information technology, and the physical infrastructure, all interacting in complex ways. Many aspects of transportation systems are uncertain, dynamic and nonlinear, and such systems may be highly sensitive to perturbations. Controls can involve multiple agents that (and/or who) are distributed and hierarchical. Humans who invariably play critical roles in a transportation system have a diversity of objectives and a wide range of skills and education. Transportation systems are usually large-scale in nature and are invariably geographically distributed.

Full Aims & Scope

Meet Our Editors

Editor-in-Chief
Fei-Yue Wang
Professor
University of Arizona