By Topic

Essential physics of carrier transport in nanoscale MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lundstrom, Mark ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Zhibin Ren

The device physics of nanoscale MOSFETs is explored by numerical simulations of a model transistor. The physics of charge control, source velocity saturation due to thermal injection, and scattering in ultrasmall devices are examined. The results show that the essential physics of nanoscale MOSFETs can be understood in terms of a conceptually simple scattering model

Published in:

Electron Devices, IEEE Transactions on  (Volume:49 ,  Issue: 1 )